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CLASS I C A L  SEVENTH-, SIXTH-,  AND FIFTH-ORDER 

STEPS I Z E  CONTROL FOR GENERAL SECOND- 
RUNGE-KUTTA-NYSTROM FORMULAS w ITH 

ORDER DIFFERENTIAL EQUATIONS 

I NTRO DUCT1 ON 

1. In two earlier reports  [ 11, [ 21 this author derived Runge-Kutta-Nystr6m 
formulas f o r  a special c lass  of second-order (vector) differential 
equations 

( 1) 
.. 
x = f (  t ,x) 

which do not contain the f i r s t  derivative 2 on the right-hand side. In 
this report  we will derive Runge-Kutta-Nystr8m formulas fo r  general 
second-order ( vector) differential equations: 

2 = f ( t , x , 2 )  ( 2) 

2. Similar to the Runge-Kutta-NystrGm formulas of report  [ 11 and the 
Runge-Kutta formulas of report  [ 31, the formulas of this report  include 
an automatic stepsize control based on a complete coverage of the leading 
t e r m  of the local truncation e r r o r  in x. This coverage is achieved by one 
additional evaluation of the differential equations. 
Kutta-Nystrb'm formulas represents  a pa i r  of integration formulas for  x 
which differ f rom one another by the one additional evaluation of the dif- 
ferential  equations. 
fore ,  the difference of the formulas represents an approximation of the 
leading t e r m  of the local truncation e r r o r  in x fo r  the lower-order 
formula. 
an automatic stepsize control fo r  the lower-order formula can be 
established. 

Each of our  Runge- 

The o rde r s  of these two formulas differ by 1. There- 

By requiring that this difference remain between preset limits, 

3 .  The formulas f o r  2 are of the same o rde r  as the lower-order formulas 
f o r  x. There is no automatic e r r o r  control with respect to the formulas 
fo r  2. Such a control would require a considerable additional effort, 
and such formulas would require more evaluations p e r  integration s tep 
than our Runge-Kutta formulas of report  [ 31 fo r  first-order differential 
equations. 



However, when deriving the Runge-Kutta -Nystrom formulas of this report, 
we have also considered the e r r o r  t e rms  in 2 and we have selected the 
coefficients of our formulas in such a way a s  to  keep the e r r o r  t e rms  in 
I? a s  small  a s  possible. 

SECTION 1 .  THE EQUATIONS OF C O N D I T I O N S  FOR 
RUNG E- KUTTA-NY ST ROM FORMULA s 

4. The derivation of the equations of condition fo r  ou r  Runge-Kutta-Nystram 
formulas, a s  explained in this section, i s  based on a procedure of 
D. Sarafyan [41. Sarafyan' s method is extended to second-order dif- 
ferential equations to yield the equations of condition for the coefficients 
of Runge-Kutta-Nystrom formulas. 

5 .  In the following we explain in detail the procedure for a fourth-order 
Runge- Kutta- Nystriirn formula. 

Let the evaluations for the Runge-Kutta-Nystrom formula for  ( 2 )  be 

2 



with to, xo, 6, being the initial conditions for the integration step, h the 
stepsize and the (Y ' s, /3 ' s and y' s the Runge-Kutta-Nystrcm coefficients 
that we want to find. 

fo + 6A3h + 12A4h2 + 20A5h3 + . . 
= f (  to + h, x0 + G0h + A2h2 + A3h3 + A4h4 + Ash5 + . . . , 

Go + 2Azh + 3A3h2 + 4A,h3 + 5A,h4 + . . .)  = R 

The evaluations ( 3) lead to the Runge-Kutta-Nystr6m formulas: 

( 1 7 )  

2( to + h) = io + ( hofo + blfl + k24 + h3f3 + k4f4 + C5f5) h + O( h5) I 
with weight factors c and h that we also want to find. 

To determine these unknown coefficients, we expand the solution x( t) of 
( 2 )  into a Taylor series a t  t = to: 

K K 

6. 

x ( t )  = xo + go(t  - to) + A2(t - to)2 + A , ( t  - 

+ A,(t - to) '  + O(t - to)6 

+ A 4 ( t  - 

with the abbreviation: 

Inserting (5)  into ( 2 )  and setting t - to = h yields: 

For the sake of briefness, we denoted the right-hand side of ( 7 )  by R. 
Taylor expansion of R a t  

( 0 )  : ( to  + h, xo + z0h, do + 2A2h) ( 8 )  

3 



leads to 

b 

f (  to + 01 h, xo + g0a h, go + f0a h) = f, + 6A3a h + 12A4a2 K h2 t- 20A,a3 K h3 
K K K K 

I 

l 
-(”) k2n.? K h2 + A 3 d  K h3) - PrL,] A p  :h3 

a x  0 a x  0 

-(%)o a x  k A 3 a  K 2h2 + 4A4a3 h‘ h$ - 3 [.(”)I a l l  A3a;h3 

= f(o)+(E)(o)( A 2 l?” + A 3 h3 ) 

) (13) 

I 

( 9 )  

+ (s) ( o) (3A3h2 + 4A4h3 ) + o( hi) 

An expansion a t  

leads to 

introducing the operator: 

W e  insert ( 9 )  and (11) into ( 7 )  and replace h by 01 K h: 

4 



Because of (4)  the functions f 
power in h. We s e t  

in ( 3 )  must be co r rec t  up to the third 
K 

f = f t  +a! h , x  + ? a  h + ( q  

2 + f a  h + ( p  

K [ o  K 0 O K  

O K  + P 1 K h ) h 2 ]  0 O K  

that will be determined a s  follows 
O K ’  ‘1K’ ’OK’ ’1K 

with constants q 

somewhat later.  

By Taylor expansion of f a t  
K 

<0> : (to + 01 h, x0 + boa h, do + foci h) 
K K K 

we obtain 

f K  = ( f K )  + (2) < O> (goKh2 + qlKh3) 
< O> 

We now insert  (13) and (11) into (16) after having replaced h in (11) 
by a h: 

K 

f = f + 6A a h + 12A a 2 h 2  + 20A a 3h3 
K 0 3 K  4 K  5 K  

5 



+ ($)o (poK - 3A 3 K  a 2  ) h2 + ( - ,a:)o ('1K - 4A4a:)h3 1 
I 

(con. ) 

Equation (17) is  called the generating formula since the introduction of 
( 17) into (4) generates the equations of condition for the Runge-Kutta- 
Nystr6m coefficients. 

I 

7. For K = 1 we find from (14) and the second equation (3 )  

and f rom (17) 

For K = 2 we find 

W e  introduce (20) into (17) and omit all  t e rms  that have already co r re -  
sponding t e r m s  in (19) : 

6 



Continuing, we find for K = 3: 

and again omitting all  t e rms  that have already corresponding t e r m s  in 
(19) o r  (21):  

No more  additional t e r m s  a r e  obtained for K = 4 and K = 5. 

The equations of condition fo r  the Runge-Kutta-Nystrzm coefficients a r e  
obtained by inserting the expansions (5) and (19 ) ,  ( 2 1 ) ,  (23 ) ,  . . . into 
the Runge-Kutta-Nystr6m formulas (4)  . 
From the first equation ( 4 )  we find 

8. 

7 



Equating corresponding t e r m s  in (24)  yields 

1 
CO + c1 + c2 + c3 + cq + c5 = 

c p ;  + c2a; + c3a; + c4a; + c p ;  = 20 1 

and 

8 



Similar equations of condition a r e  obtained from the second equation (4 ) .  
Equations (25) and (26)  a r e  listed a s  the f i r s t  nine equations of Table l.* 
The left-hand par t  of Table 1 represents  the equations of condition for x; 
the right-hand par t  represents  those for 2 .  For the right-hand part  the 
weight factors c have to be replaced by 6 as  indicated at  the top of 
the table. 

K K 

9. The procedure described in this section can be extended to cover higher- 
order  t e r m s  in the Taylor expansions. The resulting equations of con- 
dition up t o  the ninth o rde r  for x and the eighth o r d e r  f o r  ? a r e  l isted 
in Table 1. Their derivation is  naturally somewhat more involved than 
in the case  of a fourth-order formula, but it follows along the same lines 
and is ra ther  straightforward. 

To  shorten the equations w e  introduced in Table 1, the abbreviations 

SECTION I 1 .  SEVENTH-ORDER FORMULA RKN-G-7(8)2 

10. We shall  present in the following a seventh-order formula based on 
thirteen evaluations, a fourteenth evaluation being taken over a s  first 
evaluation for the next step. 

Let the evaluations be 

K= 1 
h, x o +  Goa! h +  h 2 s c  yKA fA,  Go + h ‘f P K h  

K A= 0 A= 0 K 

1. A l l  tables a r e  a t  the end of this report. 
2. W e  insert in the names of the formulas of this repor t  the letter G ,  to indicate 
that these formulas hold for the general differential equation (2)  in contrast to 
the formulas without G of [ 11 and [ 21 , which hold for  the special differential 
equation (I). 

9 



and the Runge-Kutta-Nystr6m formulas  

13 
A x = xo + i o h +  h2 6 f + O(h9) 

K K  
K = O  

12 
2 = do + h .  6 f + O(h8) 

K K  
K = O  

The first formula (29) is a seventh-order formula f o r  x ; the second 
formula is an eighth-order formula for  X. The difference x - 9 will  
represent  a first approximation of the local truncation e r r o r  for  x and 
will be used a s  stepsize control. The third formula (29) is a seventh- 
order  formula for ;. 

11. Similar to our previous reports  [ 11, [21, [ S I ,  we make a number of 
assumptions for the Runge-Kutta-Nystrb'm coefficients that will reduce 
the number of equations of Table 1 to such an extent that we can handle 
the remaining problem with relative ease. 

Let  u s  assume 

I 10 



The assumptions (30) mean that only the las t  two weight factors of the 
first two formulas (29) differ. The las t  two weight factors in these two 
formulas a r e  simply exchanged: ci2, 0 is replaced by 0, ci2. There- 
fore,  we have to compute only one set of weight factors fo r  these two 
formulas (29).  

The assumptions (31) a r e  necessary in connection with the assumptions 
of No. 12 and No. 13 to reduce the equations of Table 1. 

12. Let u s  fur ther  assume 

A s  one can easily verify, assumptions (32) eliminate a large number of 
equations of Table 1 by converting them into other equations of this table. 

In the following we list the equations of Table 1 that a r e  eliminated by the 
assumptions (32) 

IV:2 
V:2,5 
VI:2,7,8,9,10,13 
V I I : 2 , 7 , 9 , 1 1 , 1 2 , 1 3 , 1 4 , 1 7 , 2 0 , 2 5 , 2 6 , 2 7 , 2 8 , 2 9 , 3 0 , 3 1 , 3 4  
VIII:2 ,7 ,9 ,11 ,14 ,17 ,19 ,20 ,21 ,22 ,25 ,28 ,33 ,34 ,35 ,40 ,41 ,46 ,48 ,  

50,51,52,53,54,55,56,57,58,59,60,61,62,65,66,67,70,71, 
72,75,78,83,84,85,86,88,90,91,92 

Since the ninth-order equations (E) of Table 1 enter  the computation only 
as eighth-order equations for  2 we will consider these evaluations when 
dealing with the local truncation e r r o r  t e r m s  in 2. 

W e  next assume 

11 



thereby eliminating the following equations of Table 1: 

v :4 
VI:4,12 
VII:4,16,19,22,33 
VIII:4,15,18,24,27,30,37,43, 

64,69,74,77,80,94 

The assumptions 

eliminate the following equations: 

VI:6 
VII:6,24 
VIII:6,32,45 

and the assumptions 

( K =  7,8,  ... , 13) 1 

the equations: 

VI1:lO 
VII1:lO 

Finally we assume 

(35) 

1 2  



and 

thereby eliminating equations VIII:49,82,95 from Table 1. 

13. W e  make s imi la r  assumptions for the coefficients y 
K h: 

eliminating 

v:3 
VI:3,11 
VII:3,15,18,21,32 
VIII:3,13,23,26,29,36,42, 

63,68,73,76,79,93 ; 

( K = 5 , 6 ,  ... , 13) 
1 

K -1 
y CY2 = -  a4 
Kh h 12 K A= 1 

eliminating 

VI: 5 
VII:5,23 
VIII:5,31,44 ; 

eliminating 

V I M  
VIII:8,47,89 

(39) 

13 



and 

K -1 
( K = 7 , 8 ,  ... , 13) 

that eliminates VIII:12 from Table 1. 

Finally we assume 

and 

thereby eliminating VIII:38,39,81,87 from Table 1. 

I 14. The assumptions of No. 11, 12, and 13 reduce the eighth- and lower-order 

(II,1), (III,1) Y (IV, 1) Y (v, 0 ,  (VI, I ) ,  (VIL 1) 9 ( v m  1) 9 ( V I K  16) 

equations of Table 1 to the following equations: 

I 

These equations have now to be solved together with the assumptions (30)  
through (43). 

F r o m  equations 

14 



(44) 
(con. ) 

we find the weight factors c7, (28, c9, c10, '211, Ci2 as' fUnCtiOnS Of 

017, a 8 9  a 9 ~  a l O Y  

From the right-hand s ides  of Table 1 we obtain for the corresponding 
equations 

the weight factors C7, 68, b9¶ blo, hI iy  hi2 a s  functions of a 7 ,  a 8 y  a9,  
a la ,  ail . Equation (I1,l) yields coy o r  h0 when written a s  (I1,l) ' . 

15. We still have to satisfy equation (VIII, 16) and the assumptions of No. 12 
and No. 13. 

and ( 3 3 )  we obtain 
K =2 K = 2  

From (32) 

3 
p2i = 4 012 (46) 

15 



and a s  restrictive condition 

2 
= za2 

In the same way we obtain from (32) and (33) 
K =3 K=3 

and 

2 
a2 = 3-3 

y ie Id 
K=4 

Equations ( 3 2 )  and ( 3 3 )  
K=4 

(47) 

(49) 

and a corresponding formula for P43, obtained from p42 by exchanging 
a2 and a 3 .  

Equations (32),,-,' ( 3 3 )  (34)K,5 yield 
K = 5  

a corresponding formula for P54 and the restrictive condition 

1 40, - 3a5 
a3  = 2 a 5  3a4 - 2a5  

and corresponding formulas for p64 and p65. 

16  



( 34)K,7, and (35) represent  four linear 
(33) K=7’ K = 7  Equations ( 32) K=7y 

equations for  the two coefficients pTS, p76 which lead to  

a corresponding formula for 6 7 6  and to the two restrictive conditions 

1 ( Y ~  = - 1 (6 + G ) O ! 7  - (55) a5 = - 1 0  ( 6  - f i ) @ 7  Y 10  

lead to 
(33)K,8’ (34)K=83 and (35) K=8 ~ = 8 ’  

Equations (32) 

corresponding formulas for p&,  ps7 and to  the restrictive condition 

(57) 
3 

a8 = za7 

yield 
(33) K = g Y  (34)K,gy and (35) K=g K=9’ 

The four equations (32) 

and corresponding formulas for p 9 6 y  p97, and p 9 8  . 
Putting 

P 1 0 5  = 0 9 (59) 

1 7  



(60) 

and corresponding formulas for P i o 7 ,  P i 0 8 9  P i 0 9 .  

F r o m  the first equation (36) and the first equation (37) we obtain 

and corresponding formulas for Piis, pii9, and Piii0. 

Equations (32) K = l l ,  (33) K = l l y  (34) K = l l p  (35) K = l l ~  and (VIII, 16) can 

be considered a s  five linear equations for  the four coefficients P i i 7 ,  Piis,  
Pii9,  and Piii0. Therefore, a restrictive condition for  the a ’ s  can  be 
derived f rom these five linear equations: 

1 8  



with 

and 

with 

19 



The second equations ( 3 6 )  and ( 3 7 )  yield 

We then obtain f rom ( 3 2 )  K=12, ( 3 3 )  K = 1 2 9  ( 3 4 )  K = 1 2 9  ( 3 5 )  K=12 , and 
(VIII, 16) ’ : 

and corresponding formulas for 

The abbreviation R stands for 

P 1 2 9 ,  P 1 2 1 0 ,  and Plz l l .  

This concludes the computation of the coefficients /3 
KA* 



16.  The computation of the coefficients y 
F r o m  ( 3 8 )  

proceeds in a s imi la r  way. Kh 
we obtain 

K=2 

1 
4 y21 = - a; 9 

and from ( 3 8 )  K = 3 :  

Putting 

equation ( 3 8 )  yields: 
K =4 

and corresponding formulas for y 5 3 ,  y54. 

In the same way, we obtain f rom ( 3 8 )  , ( 3 9 )  K=6,  and (40)  K =6' - K =6 

and corresponding formulas for yG4,  y C 5 ,  and from ( 3 8 )  K=7 ,  ( 39)  =7 3 

( 4 ( N K Z 7 ,  and (41) K =7' * 

21 



and corresponding formulas for y74, y75, 7 7 6 .  

Putting 

and corresponding formulas for y859 y86, and 7 8 7 .  

Putting 

Y93 = Y94 = 0 9 (77) 

and corresponding formulas  for y96, yg7, and 7 9 8 .  

With 

22 



nd correspondingly ~ 1 0 7 ,  Y108, and ~ 1 0 9 .  

The first equations (42) and (43)  yield 

we can 
u = l l  F r o m  equations (38)  

now obtain 
(39)  K = 1 1 9  (40) K=ll, and (41) u = 1 1 ’  

and corresponding formulas  f o r  ~ 1 1 9 ,  and Y l i l o .  

F r o m  the second equations (42) and (43)  we find 

23 



The last  equation is equation (E, 20) ' of Table 1. If this last  equation 
is satisfied, one of the e r r o r  coefficients in 2 becomes zero,  thereby 
reducing the e r r o r  in 2 .  

The above five equations yield 

1 

+ ... + p ) - ( ' K 1  + 'K2 K ,  K-1 

) 
1 

= -a2 - (yK1 + yK2 , . . . + y 
' K O  2 K K, K - 1  

I 

I with 

' ( K =  1,2,3 ... , 13) , (85) 

17. The coefficients /3 and y can not be found from the equations of 
K O  K O  

condition since they do not enter these equations. 

However, comparing (3)  with (28),  we find immediately 

with the parentheses in ( 85) being omitted for K = 1. 

24 



18. 

19. 

In No. 15 and No. 16 we have expressed the coefficients P and y 

by the coefficients a . A s  explained in No. 15, there  a r e  relations 

between the aK.  These relations leave us with only four independent 

a! : a4, a ? ,  ag,  and ala. Except for trivial restrictions,  these four 

a 

RKN-G-7( 8) -13 based on thirteen evaluations pe r  step of the differential 
equation ( 2 )  . 

Kh Kh 

K 

K 

K 
can be chosen arbitrari ly and lead to a Runge-Kutta-Nystrzm formula 

There remains the problem of how to select the four independent coeffi- 
cients a4, a?,  a3 ,  and cy io .  Naturally, one would like to have a Runge- 
Kutta-Nystr6m formula with small  truncation e r r o r s  for  whatever the 
problem ( 2 )  might be. Unfortunately, the truncation e r r o r s  also depend 
on the problem ( 2 )  . A formula that might be very efficient fo r  a cer ta in  
problem can  prove to be relatively poor for another problem. 

Therefore, the only reasonable way to select  the independent parameters  
a 4 9  ( 3 7 ,  a g ,  a10 seems  to be to find in Table 1 the e r r o r  coefficients for 
the eighth-order t e r m s  in x and 2 .  However, one has to keep in mind 
that these e r r o r  coefficients have to be multiplied with cer ta in  expressions 
in the partial derivatives of ( 2 ) ,  summed up, and multiplied with h8 to  
represent  an approximation of the local truncation e r r o r  in x o r  i. 

It can be assumed, however, that the local truncation e r r o r  becomes 
sma l l  if the e r r o r  coefficients a r e  sufficiently small  since the local 
truncation e r r o r  obviously tends to zero  if all e r r o r  coefficients go to 
zero.  

F r o m  Table 1 we find the following 1 0  e r r o r  coefficients 
different f rom each other: 

n x which a r e  

the suffix indicating the number of the eighth-order equation of condition 
in Table 1. For instance 

25 



There a r e  more e r r o r  coefficients for x in Table 1. These additional 
e r r o r  coefficients, however, differ by a constant factor only from those 
listed above. 

F r o m  the eighth-order equations of condition for  2 in Table 1 we find 
the following 28 e r r o r  coefficients. 

'2499 '2559 '256, '2589 '260, +262, *263, T266 

It is, for instance 

Again, there  a r e  more error coefficients for i in Table 1 which differ 
by a constant factor f rom those listed above. 

Since there  a r e  considerably more e r r o r  t e rms  contributing to the trunca- 
tion e r r o r  in i than there  a r e  for the truncation e r r o r  in x ,  the e r r o r  
control should be based on the truncation e r r o r  in 2 .  However, since 
this seems to be impossible without an  unreasonable increase in the com- 
putational effort, we have to r e so r t  to an e r r o r  control in x and t r y  to 
keep the e r r o r s  in 2 a s  smal l  as  possible. Since these e r r o r s  in 2 
propagate directly through the differential equation (2) ,  their  influence 
is likely to be more ser ious than in the case  of the differential equation 
(1) 

20. W e  computed the above listed e r r o r  coefficients in x and 2 for a large 
variety of combinations of the parameters  a4, a7, ag, aio and finally 
decided on a combination for which the e r r o r  coefficients in x a s  well a s  
the ratio of the e r r o r  coefficients in 2 to the e r r o r  coefficients in x 
were  reasonably small .  

3 .  Because of the choice of ~ 1 2 7 ,  . . , y1211 in No. 16 the e r r o r  coefficient 
TzO is zero. 

26 



We selected for our seventh-order Runge-Kutta-NystrGm formula RKN- 
G-7( 8)-13 the following combination 

The coefficients for this formula a r e  listed in Table 3 .  Since the last  
evaluation (28) is supposed to be taken over a s  f i r s t  evaluation for the 
next s tep,  the coefficients P i 3 0 9  P i 3 1 ,  . . . , Pi312 and Y130, Y131, ... . ., 
y1312 in Table 3 have to be equal to the weight factors bo, &, . . . , cI2 
and co, cl ,  . . . , c12 of (29 ) .  

The computation of the coefficients for  our seventh-order formula and 
also for the sixth-order formula, l isted l a t e r ,  was performed in 
40 -digit arithmetic. 

Table 2 shows the pattern of our seventh-order formula. A l l  coefficients 
different f rom 0 and 1 a r e  marked by an asterisk.  

SECTION I 1 1 .  SIXTH-ORDER FORMULA RKN-G-6(7) 

21. The derivation of a sixth-order formula i s  s imi la r  to the derivation of 
the seventh-order formula in Section 11. 

We base the sixth-order formula on ten evaluations with an eleventh 
evaluation which is taken over a s  f i r s t  evaluation for the next step. 

Similar  to Section I1 we make the following assumptions for the coefficients 

c i =  0, ... , h 4 =  0 ; C Y 9 = a 1 0 =  1 

- - - p = p  = ... - - Pl0, = 0 Y31 - Yql - 0 ’  - Y l o l =  0 

= b ( h =  0,1 ,2 ,  ... , 9) P,, - P 6 ,  = * - P102 = 0 P10,A h 

= c  ( h = 0 , 1 , 2 ,  ... , 9) Yl0,h h 

31 41  

- - 
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and 
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22. The assumptions of No. 2 1  reduce the seventh- and lower-order equations 
of Table 1 to 

The f i r s t  six of these equations yield, in the same way as  in Section 11, 

Equation (VII, 10) has to be solved together with the assumptions of No. 
21. The.resulting values f o r  P21, P32, 6 4 2 ,  P43, P53, P54, p63 ,  p 6 4 ,  p 6 5  
and the restrictions fo r  ai, cy2, a3 a r e  the same  a s  in Section 11.. They 
a r e  given by equations (46) through (53).  

the weight factors Co, C5, c6, C7,  C8, ,Cg and 60, 65, 6 6 9  67, 68,  69. 

etc. a r e  different f rom those of 
7h’ ’8,’ 

The remaining coefficients p 
Section 11. 

Putting 

= o  , 
p73 

and corresponding formulas for p75 and p76‘ 

The first equations (92) and (93) yield 

(99) 
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Equations (89) 

sidered a s  four linear equations for  the three coefficients P 8 5 ,  P 8 6 ,  p 8 7 .  

They lead to a res t r ic t ion for  a*: 

(90)K=8,  (91) , and (VII ,  10) can then be con- 
K =8' ~ = 8  

with 

and corresponding formulas  for p 8 6  and P 8 7 .  

The second equations (92) and (93) give 
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Equations (89) K=9, (90) K=9, (91) K=gY and (VII, 10) then represent  

four equations for  the four coefficients Pg5, P96,  P g 7 ,  P98. Their  solution 
is 

and expressions P96,  Pg7 that correspond to Pg5. 

23. We still have to determine the coefficients y The coefficients y21, 
Kh’ 

Y32, Y42, Y43, Y52, Y53, Y54, Y62, Y63, Y64, 7 6 5  are the Same as the corre- 
sponding coefficients in Section I1 and a r e  given by equations (68) through 
(73) * 

Setting 

we find from (94) K=7’ (95)K,7’ (96)K,7 

and corresponding expressions for y75 and y76. 

The first equation (97) yields 

Setting 



equations (94) K = s )  (95)K=sY (96) K = s  give: 

and corresponding expressions for y86 and y87. 

F r o m  the second equation (97) ,  we find 

1 
y92 - - - ?- c9 (h5Y52 -k ;83/82) ’ 

With 

Y93 = Y94 = Y95 = 0 

(95) K = 9 9  (96) K=g K=9’ 
we find from (94) 

and corresponding expressions for y97 and Y98. 

This concludes the computation of the coefficients /3 and y since 
Kh Kh ’ 

and y a r e  again obtained from (85) with K = 1 , 2 , 3 ,  . . . , 10. 

and yKh in No. 22 and No. 23 contain four 

@KO K O  

24. The expressions for /3 
Kh 

parameters  ad, as, ( Y 6 ,  and a7 which we can choose arbitrari ly.  

A s  in Section 11, we choose these parameters  so that the e r r o r  coefficients 
in x and the ratio of the e r r o r  coefficients in 2 and in x become 
reasonably small .  

In the case  of a sixth-order Runge-Kutta-Nystrgm formula there  a r e  five 
different error coefficients in x: 
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and eighteen different e r r o r  coefficients in 2: 

In our final sixth-order formula we chose for  the f ree  parameters  

1 , a7 = - 2 ag = - 
3 6 

5 3 
9 a 5 = -  a4 = - 

8 '  

The coefficients of the sixth-order formula with the parameter  values 
(114) a r e  listed in Table 5. 

The pattern of our  sixth-order formula is shown in Table 4. 

SECTION IV. FIFTH-ORDER FORMULA RKN-G-5(6) 

25. Although it is possible to construct fifth-order formulas based on seven 
evaluations per  step, we prefer to use eight evaluations pe r  s tep,  since 
we then obtain formulas  with smaller  local truncation e r r o r  t e rms .  In 
spite of the one additional evaluation per  step such formulas proved to be 
more economical. They allow a la rger  stepsize because of their smal le r  
truncation e r r o r s .  

We make the following assumptions fo r  the coefficients of our fifth-order 
formula : 
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and 

and 

26. The assumptions of No. 25 reduce the sixth- and lower-order equations of 
condition of Table 1 to 
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The first five of these equations yield, a s  in Section I1 and 111, the weight 
factors co, c4, c5, c6, c7 and k,,, k4, k5, C6, k7.  Equation (VI,6) has to 
be solved together with the assumptions of No. 25. The resulting values 
for  P2*, P32 and the restrictions for  a i ,  a2 a r e  the same  a s  in Sections 
I1 and I11 and a r e  given by equations (46) through (49) .  

Equations (119) can be satisfied by 

and (118) we then find 
K = 4  

F r o m  (117) 
K =4 

2 
O3 = 3 Q 4  

and 

3 
P 4 3  = 4 Q!4 - 

yield 
K =5 Equations ( 117) =5 and (118) 

(125) 

Equations (117) K=6, (118) K=6 and (VI,6) result  in 

- 1 6Q!4Q!5 - 4(Q!4 + Q!5)Q!6 $. 3Q!iRi 
P 6 3  - 12 a3(a4 - Q3)(CY5 - CY3) 

and corresponding expressions for P64 ,  P 6 5 '  The abbreviation Ri  in 
(127) stands for 
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We compute the coefficients p73,  p74, p75,  p76 f rom (117) , (118)K,6, 
K =6 

(VI ,  6 )  ' and from the additional condition Ti.,, = 0 (see Table 1) . The 
las t  condition helps to reduce the local truncation e r r o r  in 2. The above 
equations lead to 

and corresponding expressions for p74, p 7 5 ,  p76' Here we have used the 
abbreviations 

27. We now compute the coefficients y The coefficient yZ1 i s  again given 
Kh * 

by (68 ) .  The coefficients y3i and y32 a r e  obtained f rom equations 
(120) and (121) K=3:  

K =3 

With y4i = 0 we find from (120) and (121) 
K = 4  K = 4 '  

Setting 
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we find f rom (122) : 

Equations (120) and (121)  then yield K=5 K =5 

1 201 - a  - % )  
y54 = 12 4 - y52 

With 

7 6 3  = Y73 = 

we find from (120) K=6and (121) K = 6 :  

and f rom (120) K = 7 ,  (121) K=7 and f rom $8 = 0 ( s e e  Table 1) : 

(133) 

and two corresponding formulas for y75 and y76. Here we have used the 
abbreviation 

This concludes the computation of the coefficients P and y since Kh K X  l 
and y a r e  again computed f rom (85) with K = 1 ,2 ,3 ,  . . . , 8. 

’ K  0 K O  
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28. The expressions f o r  /3 and yKh in No. 26 and No. 27 contain three 
Kh 

f ree  parameters :  a4, a5, and 
e t e r s ,  we might t ry  to obtain formulas with reasonable small  e r r o r  
coefficients in x a s  well a s  in 2 .  

By a proper choice of these param- 

In the case  of our fifth-order formula we have only one e r r o r  coefficient 
in x: 

and four e r r o r  t e rms  in i: 

29. It is interesting to notice that by adding one more condition (VII ,  1) ' to 
(11,l) * , (111,l) , ( IV,  1) ' , ( V ,  1) * , and (VI,  1) * , we obtain a restrictive 
condition for  the a' s: 

. . .  
that makes all  our  e r r o r  coefficients T6, TI ,  T6, T24, T,, zero. Natu- 
rally,  such a choice of a6 is  not suitable for our fifth-order formula, 
since our  stepsize control would break down in this case. 

However, by choosing (26 close to the value of (138) ,  we can obtain 
sufficiently smal l  e r r o r  coefficients in x and ;7i that lead to efficient 
fifth-order formulas. 

Such a formula is obtained for  

3 2 a5 = - 9 
a4 = - (139) 

For the values a4 and a 5  of (139) the condition (138) would resu l t  in 
a6 = 17/60 ( E  0.2833), which is  reasonably close to = 2/7 ( E  0.2857). 
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The coefficients for  our  fifth-order formula based on the values (139) for 
the free parameters  cy4, ab ,  a6 are listed in Table 7. Since these 
coefficients have relatively simple values, we have listed them in frac-  
tion form. 

t =  6 : (  

The pattern of our  fifth-order formula is shown in Table 6.  

y = 0.1966 6280 9565 9560 

d = 0.3341 2960 6037 2482 

3; =-0.9745 3805 7977 8027 

SECTION V. APPLICATION TO TWO NUMERICAL EXAMPLES 

30. In this section we apply the Runge-Kutta-Nystr6m formulas of this report  
and the Runge-Kutta formulas of [31 to two problems; one of them is 
linear in the f i r s t  derivatives and the other one i s  nonlinear. A s  the 
linear problem we choose an orbit of the restricted problem of three  
bodies. The same  orbit  has already been integrated in an ea r l i e r  paper 
of ours  151, using a power se r i e s  expansion technique. The orbit is 
pictured in Figure 1. 

Table 8 shows the differential equations and the initial conditions for  the 
problem. Since the problem has no solution in closed form,  we integrated 
the problem by the above mentioned power se r i e s  expansion technique 
using thirty decimal digits. 

Truncating the s e r i e s  after 12th-order, 16th-order, o r  20th-order t e rms ,  
the results ( fo r  t = 6)for  x, y, 2 , 3; agreed to about twenty decimal 
places. Rounding these results to 16 decimal places, we found 

1 x = 0.1167 0361 7342 5520 10" I 

We substituted these values for  the solution of our problem. The e r r o r s  
Ax,  Ay,  AG, A $  in Table 8 a r e  the deviations of the solution obtained 
by our Runge-Kutta-NystrGm or  Runge-Kutta formulas f rom the above 
values (140). 
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31, 

I 

32. 

33. 

Table 9 shows the differential equations and the initial condition for a 
problem that is nonlinear in the first derivatives. Since this problem 
has a solution in closed form, the e r r o r s  of our numerical solutions 
could easily be established. 

A l l  calculations in Tables 8 and 9 were  executed on an  IBM-7094 computer 
in double precision (16 decimal places).  The computer was equipped 
with an electronic clock to measure the execution t ime for the various 
formulas. 

The stepsize control for  our Runge-Kutta-Nystrgm and our  Runge-Kutta 
formulas is described in No. 26 of our ea r l i e r  report  [ 11. 

Tables 8 and 9 show the results of the various formulas applied to 
Problem I and 11. Comparing the results of our  new Runge-Kutta- 
Nystrzm formulas with those of our Runge-Kutta formulas of [31, we 
notice that, in these examples, we save f rom 25 percent to 60  percent 
of the execution t ime by using the new formulas. In most cases ,  our  
new formulas a r e  a l so  slightly more  accurate. When relaxing the toler- 
ance f rom 0 .1  a to 0 . 1  
t ime for our new formulas do not change very much. 

the relative savings in execution 

Computation Laboratory 
George C .  Marshall  Space Flight Center 

National Aeronautics and Space Administration 
Marshall  Space Flight Center, Alabama 35812, May 31, 1974 
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5 

6 

7 

8 

TABLE 1. EQUATIONS O F  CONDITION FOR THE 
RUNGE-KUTTA-NYSTR~M COEFFICIENTS 

1 120 = c cK(K$P*Pkl) 

1 

1 
2 
- 

1 
3 
- 

1 
6 
- 

1 
4 
- 

1 
8 
- 

1 
24 
- 

1 
12 
- 

1 
24 
- 

1 
5 
- 

1 
10 
- 

1 
30 
- 

1 
15 
- 

1 
6 0  
- 

1 
20 
- 

1 
20 
- 

1 
30 
- 

i 

i1 

111 

IV 

V 

- 
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TABLE 1. ( Continued) 

9 

10 

11 

12 

13 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

1 - = 
42 .,a; 

1 

1 - =  
252 ; C ~ a i Q ~ l  

_ -  I, - E c a Z P  
126 K K K2 

1 - -  
504 - ; ‘xaKQK2 

1 
168 ‘KffKPK3 
- =  

168 

1 
840 ‘ ‘KQK3 - =  

1 
504 

1 
210 = ; cKpK4 

1 ,=E.. K K 2  P K 1  

1 252 = c ..a:( K$PKApAl) 

1 
120 
- 

1 
40 
- 

1 
120 
- 

1 
60 
- 

1 
120 
- 

1 
6 
- 

1 
12 
- 

1 
36 
- 

1 
18 
- 

1 
72 
- 

1 
24 
- 

1 
24 
- 

1 
120 
- 

1 
72 
- 

1 
30 
- 

1 
36 
- 

1 
36 
- 

I 
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TABLE 1. (Continued) 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

X *  ,i 

1 
144 
- 

1 
48 
- 

1 
144 
- 

1 
72 
- 

1 
240 
- 

1 
720 
- 

1 
360 
- 

1 
60 
- 

1 
180 
- 

1 
90 
- 

1 
36 0 
- 

1 
120 
- 

1 
120 
- 

1 
72 
- 

1 
144 
- 
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TABLE 1, ( Continued) 

28 

29 

30 

3 1  

32 

33 

34 

1 

2 

3 

4 

5 

6 

7 

1 - = 
56 c,LY; 

1 

1 
112 
- -  

1 
- =  c a 3 Q  
336 K K K 1  

1 
168 
- =  

1 

1 
720 
- 

1 
180 
- 

1 
720 
- 

1 
240 
- 

1 
720 
- 

1 
36 0 
- 

1 
720 
- 

1 
7 
- 

1 
14 
- 

1 
42 
- 

1 
2 1  
- 

1 
84 
- 

1 
28 
- 

1 
28 
- 

- 

VI 

vi1 
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TABLE 1. ( Continued) 

- 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

2 1  

X I  CK, bK - 2  

1 
140 
- 

1 
84 
- 

1 
35 
- 

1 
42 
- 

1 
210 
- 

1 
252 
- 

1 
168 
- 

1 
126 
- 

1 
42 
- 

1 
56 
- 

1 
63 
- 

1 
56 
- 

1 
42 
- 

1 
168 
- 

4 6  



TABLE 1. ( Continued) 

VIII 22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

1 
56 
- 

1 
168 
- 

1 
84 
- 

1 
280 
- 

1 
840 
- 

1 
420 
- 

1 
70  
- 

1 
210 
- 

1 
105 
- 

1 
420 
- 

1 
140 
- 

1 
140 
- 

1 
84 
- 

1 
420 
- 
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36 

37 

38 

39 

40 

41  

42 

43 

44 

45 

46 

47 

48 

49 

50 

TABLE 1. (Continued) 
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TABLE 1. (Continued) 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

6 1  

62 

63 

64 

65  

1 
252 

= -  

1 
252 

= -  

1 
126 

= -  

1 
336 

= -  

1 
112 

= -  

1 
336 

- - -  

1 
168 

= -  

1 
168 

= -  

1 
840 

- - -  

1 
210 

= -  

1 
840 

= -  

1 
280 

= -  

1 
840 

= -  

1 
420 

= -  

1 
1260 

= -  



TABLE 1. (Continued) 

- 

66 

67 

68 

69 

70 

71  

72 

73 

74 

75 

76 

77 

78 

79 

80 

- 
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TABLE 1. (Continued) 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 



TABLE 1. (Continued) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

I ( -  
c i :  . <  

K’ K 

1 

1 
144 
- =  

1 
432 
- =  

1 
216 ‘Kff4KPK2 
- =  

1 
864 - = e cKff;QK2 

288 

288 

1 
1440 e ‘KffiQK3 
- =  

L= c a 2 Q  P 
864 K K K 1  K 1  

1 
360 e cKff2KpK4 
- =  

1 
432 e cKff‘,pK2pK1 
- =  

L= e c a Q  
2160 K K K4 

1 - -  
1728 - e ‘KffKQK2’K1 

1 - =  e c a Q Z  
2592 K K K 1  

- -  
1296 - e ‘KffKQKlPK2 

432 

- -  
576 - 2 

1 
8 
- 

1 
16 
- 

1 
48 
- 

1 
24 
- 

1 
96 
- 

1 
32 
- 

1 
32 
- 

1 
16 0 
- 

1 
96 
- 

1 
40 
- 

1 
48 
- 

1 
240 
- 

1 
192 
- 

1 
288 
- 

1 
144 
- 

1 
48 
- 

1 
64 
- 

52 



TABLE 1. (Continued) 

M 18 

19 

20 

2 1  

22 

23 

24 

25 

26 

27 

28 

29 

30 

3 1  

32 

33 

x -  t X  

1 - =  
2880 ; 'KQK3'K1 

- =  Z c Q  Q 
5184 K K2 K 1  

- = C c Q  1 P 
1728 K K 1  K3 

1 
1728 

1 - = 
504 'K'K~ 

' = C c P  720 K K4 P K 1  

- = C c P  1 P 
864 K K3 K2 

432 = c (g e,.,,) 

1 
1728 

1 
576 

1 
1728 

1 
72 
- 

1 
64 
- 

1 
336 
- 

1 
320 

1 
576 

- 

- 

1 
288 
- 

1 
192 
- 

1 
192 
- 

1 
56 
- 

1 
80 
- 

1 
96 
- 

1 
96 
- 

1 
48 
- 

1 
192 
- 

1 
64 
- 

1 
192 
- 

53 



TABLE 1. ( Continued) 

I 

54 

- 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

- 

c b  
K' K 

X 

1 
96 

= -  

1 
320 

= -  

1 
96 0 

= -  

1 
480 

= -  

1 
80 

= -  

1 
240 

= -  

1 
120 

= -  

1 
480 

= -  

1 
16 0 

= -  

1 
16 0 

= -  

1 
96 

- - - 

1 
480 

= -  

1 
1440 

= -  

1 
720 

= -  

1 
2880 

= -  



49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

GO 

61 

62 

63 

64 

- 

TABLE 1. ( Continued) 

c 6  - 2  
K' K 

1 
960 
- 

1 
960 

1 
96 

- 

- 

1 
288 
- 

1 
144 
- 

1 
576 
- 

1 
192 
- 

1 
192 
- 

1 
960 
- 

1 
576 
- 

1 
24 0 
- 

1 
288 
- 

1 
288 
- 

1 
288 
- 

1 
144 
- 

1 
384 
- 

- 

VIII 
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- 

65 

66 

67 

68 

69 

7 0  

71 

72 

73 

74 

75 

76 

77 

78 

79 

TABLE 1. (Continued) 

1 
128 

= -  

1 
384 

= -  

1 
192 

= -  

1 
672 

= -  

1 
2016 

= -  

= -  1 
1008 

1 
4032 

= -  

1 
1344 

= -  

1 
1344 

= -  

1 
6720 

= -  

1- 
4032 

= -  

1 
1680 

= -  

1 
2016 

= -  

1 
1152 

= -  

1 
112 

= -  
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TABLE 1. (Continued) 

80 

81  

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

- 

x -  

1 
336 
- 

1 
168 
- 

1 
672 
- 

1 
224 
- 

1 
224 
- 

1 
1120 
- 

1 
672 
- 

1 
280 
- 

1 
336 
- 

1 
1680 
- 

1 
1344 
- 

1 
2016 
- 

1 
1008 
- 

1 
336 
- 

1 
448 
- 
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TABLE 1. (Continued) 

7 

95 

96 

97 

98 

99 

100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

- 

1 
504 

= -  

1 
448 

= -  

1 
1152 

= -  

1 
384 

= -  

1 
576 

= -  

1 
576 

= -  

1 
1152 

= -  

1 
384 

= -  

1 
1152 

- - -  

1 
576 

= -  

1 
192 

= -  

1 
576 

= -  

1 
192 

= -  

1 
576 

= -  

1 
288 

= -  
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TABLE 1. (Continued) 

110 

111 

112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

124 

- 

CK. bK + t  

2160 = c c K f f2  K [s PK*ff*@ P&)] 

1 
192 

= -  

1 
640 

= -  

1 
1920 

= -  

1 
960 

= -  

1 
16 0 

= -  

1 
480 

= -  

1 
240 

= -  

1 
96 0 

= -  

1 
320 

= -  

1 
320 

= -  

1 
192 

- - -  

1 
96 0 

= -  

1 
240 

= -  

1 
96 0 

= -  

1 
320 

- - -  



TABLE 1. ( Continued) 

- 

125 

126 

127 

128 

129 

130 

131 

132 

133 

134 

135 

136 

137 

138 

139 

- 

x 1 -  c i :  . i  K '  K 

1 
2592 

1 
1920 

= -  

1 
576 0 

= -  

1 
2880 

= -  

1 
288 

= -  

1 
1152 

= -  

1 
576 

= -  

60 



TABLE 1. (Continued) 

- 

140 

1 4 1  

142 

143 

144 

145 

146 

147 

148 

149 

150 

151 

152 

153 

154 

- 
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TABLE 1. (Continued) 

155 

156 

157 

158 

159 

16 0 

16 1 

16 2 

163 

164 

16 5 

166 

167 

168 

169 

- 

1 
20 160 

= -  

1 
3360 

- -  

1 
l o  080 

= -  

1 
5040 

= -  

1 
20 160 

= -  

1 
6720 

= -  

1 
6720 

= -  

1 
4032 

= -  

1 
1152 

= -  

1 
336 

= -  

1 
1344 

= -  

1 
44 8 

= -  

1 
1344 

= -  

1 
672 

= -  

1 
2240 

= -  
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TABLE 1. (Continued) 

17 0 

17 1 

172 

17 3 

174 

175 

176 

177 

178 

17 9 

180 

181 

182 

183 

184 

x -  i 

1 
6720 

= -  

1 
3360 

= -  

1 
56 0 

= -  

1 
1680 

= -  

1 
840 

- - -  

1 
3360 

= -  

1 
1120 

= -  

1 
1120 

= -  

1 
672 

- - -  

1 
3360 

= -  

1 
10 080 

= -  

1 
5040 

= -  

1 
SO 160 

= -  

1 
6720 

= -  

1 
6720 

= -  
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TABLE 1. (Continued) 

185 

186 

187 

188 

189 

190 

191 

192 

193 

194 

195 

196 

197 

198 

199 

- 

64 



~~ 

- 

200 

201 

202 

203 

204 

205 

2 06 

207 

2 08 

209 

210 

211 

212 

213 

214 

TABLE 1. (Continued) 

1 
2688 

= -  

- 1  - -  
1344 

1 
576 

- - -  

65 



215 

2 16 

2 17 

218 

219 

220 

221 

222 

223 

224 

225 

226 

227 

228 

229 

TABLE 1. (Continued) 



- 

230 

23 1 

232 

233 

234 

235 

236 

237 

238 

239 

240 

24 1 

242 

243 

244 

- 

TABLE 1. (Continued) 

X '  c i :  
K' K 

- 

VI11 

67 



TABLE 1. (Continued) 

245 

246 

247 

248 

249 

250 

251 

252 

253 

254 

255 

256 

2 57 

258 

259 

- 

1 
20 160 

= -  

68 



TABLE 1. (Concluded) 

M 260 

26 1 

26 2 

263 

264 

26 5 

266 

c i :  I K '  K 

VIII 

69 



~ 

TABLE 2. PATTERN FOR RKN,G-7( 8)-13 

Local truncation e r r o r  in  x: TE = ~ 1 3 1 2  ( f l 2  - f l3 )  h2 
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TABLE 3. COEFFICIENTS FOR RKN-G-7( 8)-13 

0'1 = 0.7347 0804 8410 6438 3606 1035 6687 4183 lo-' 
0'2 = 0.1102 0620 7261 5965 7540 9155 3503 1127 
cv3 = 0.1653 0931 0892 3948 6311 3733 0254 6691 

c y 5  = 0.2662 8826 9291 2616 4263 5203 6943 9706 
04 = 0.5 

cV6 = 0.6337 1173 0708 7383 5736 4796 3056 0294 
0 7  = 0.75 
0 8  = 0.5625 
0 9  = 0.125 
0110 - - 0.375 

= 0.9665 2805 1602 3570 0834 4516 4211 9099 
a 1 2  - 1  - 
"13 - 1  - 

P i 0  - - 0.7347 0804 8410 6438 
p20 = 0.2755 1551 8153 9914 
p21 = 0.8265 4655 4461 9743 
P 3 o  = 0.4132 7327 7230 9871 
P31 = 0 
P 3 2  = 0.1239 8198 3169 2961 
P 4 0  = 0.8967 0558 7637 9578 
p41 = 0 
0 4 2  = -0.3458 5915 2683 1433 
P43 - - 0.3061 8859 3919 3475 
P 5 0  = 0.5705 3369 4239 6532 
P51 - 0  - 

P 5 2  = 0 
P53 = 0.2066 4670 6954 9824 
p54 = 0.2588 1929 1231 3856 
p60 = 0.2213 0953 4027 3273 
P61  = 0 
p62 = 0 
0 6 3  = 0.3666 6901 8421 5938 
6 6 4  = 0.3207 5560 5327 6707 
,865 = -0.7584 3846 4432 5897 
P 7 0  = 0.8333 3333 3333 3333 
P71 = 0 
p72 = 0 
P 7 3  = 0 
P74 = 0 

3606 
3 852 
1556 
5778 

4733 
2658 

6799 
8533 
8229 

5793 
4 740 
8 534 

0713 
8702 
5333 
3333 

1035 6687 
2888 3757 
8665 1273 
4332 5636 

5299 7691 
3783 2538 

4110 9332 
5732 6078 
3636 4664 

1750 7585 
8928 9176 
2980 5428 

9353 1564 
4980 3819 
8352 8715 
3333 3333 

4183 lo-'  
7819 lo-'  
3456 lo-' 
6728 lo-' 

001 8 
9875 

7799 - lo+ '  
8811 10'' 
4660 lo-' 

7 561 
7848 
5043 lo-'  

81 06 
91 80 
4967 IO- '  
3333 lo-' 
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TABLE 3. (Continued) 

0.3843 6436 9641 3162 1037 9110 0848 8971 

0.8349 6093 7500 0000 0000 0000 0000 0000 I O - '  

P75 = 
P76 = 0.2823 0229 7025 3504 5628 7556 5817 7696 
P80 = 
P8l = 
6 8 2  = 
P83 = 0 
Pa = 0 
P85 = 0.3830 6747 4793 9740 8845 8700 6356 1136 
P86 = 0.1354 8721 2706 0259 11% 1299 3643 8864 

-0.3955 0781 2500 0000 0000 0000 0000 0000 Pa? = 
0.7342 0353 2235 9396 4334 7050 7544 5816 lo-'  P 9 0  = 

P9i = 0 
PO2 = 0 
P93 = 0 
P94 = 0 
P 9 5  = 0.9880 8964 9160 2291 6024 2057 1033 6420 lo- '  
Pg6 = 0.2415 3311 3273 2774 9549 8428 0345 1955 
Pg7 = -0.4870 7561 7283 9506 1728 3950 6172 8395 lo- '  
P 9 8  = -0.2400 5486 9684 4993 1412 8943 7585 7339 

PI00 = 0.8137 8441 1270 6706 4904 0410 5640 4207 
P i 0 1  = 0 
P i 0 2  = 0 
P I 0 3  = 
P i 0 4  = 
Pi05 = 
P i 0 6  = -0.3626 6091 1746 4713 4384 0315 3205 8792 
PI07 = 0.6972 6880 5971 2792 8317 2726 0984 7243 lo- '  
P I 0 8  = 0.3779 7780 6207 6339 2161 1543 4150 9711 
Piog = 0.2818 1838 0829 0027 8742 1095 1900 0315 
Pllo = -0.1404 2538 9224 8283 8913 2800 3122 5476 10'' 
P i l i  = 0 
P i 1 2  = 0 
P i 1 3  = 0 
Pi14 = 0 
P i l 5  = -0.1355 5559 0294 0495 7528 3041 1334 2361 10'' 
P l i6  = -0,1502 1472 8248 4805 0961 7213 3096 9968 10" 
Pi17 = 0.1476 7543 2841 6794 9686 2336 0684 1588 10" 
6118 = -0.2170 7681 9651 3368 8432 5773 7360 7995 I O + '  
O I i 9  = 0,6614 9759 5026 7655 8681 0392 0283 3030 lo+'  
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TABLE 3. (Continued) 

7526 
8651 

5599 
2228 
8269 
1533 
0410 
1581 
7747 
9303 

3475 
0033 
81 33 
7025 
63 84 
9822 

1735 6932 
8158 0131 

5536 5683 
9286 5823 
0452 9876 
1240 3384 
0463 7228 
4660 2838 
6424 3799 
0565 8188 

2766 3160 
3068 7654 
6112 5092 
2594 2014 
5106 2987 
7046 7288 

1530 
5268 

3001 
1516 
0506 
1312 
7590 
81 24 
5408 
31 52 

6400 
9234 
9 893 
0796 
3791 
4309 

6792 2237 
1768 8218 

0459 2152 
1351 2481 
5182 3862 
4067 4298 
0786 7645 
0696 6716 
2370 9555 
6601 7368 

6388 5341 
1625 1536 
1878 9987 
3933 2927 
2680 9815 
1671 3445 

6434 10" 
7497 10+l 

9105 10" 
2231 10" 
2704 lo+ '  
9148 lo+ '  
6468 * 10" 
4840 
851 2 
1744 10-1 

7712 
4336 
1888 
2621 
0965 
6960 - 10-1 

ylo = 0.2698 
y20 = 0.3036 
yzl = 0.3036 
~ 3 0  = 0.6831 
731 = 
y32 = 0.6831 
~ 4 0  = -0.1026 
Y41 = 
Y42 = 0 
Y43 = 0.1260 
Y50 = 0.9890 
Y51 = 0 
~ 5 2  = 0.2040 

7 5 3  = 0.5026 

9795 8199 6884 8329 9949 7050 8715 lo- '  
3520 2974 6495 4371 2443 4182 2304 lo- '  
3520 2974 6495 4371 2443 4182 2304 lo- '  
7920 6692 9614 7335 2997 6910 0184 

7920 6692 9614 7335 2997 6910 0184 
3757 7319 7788 8994 3108 7282 4217 lo- '  

2637 5773 1977 8889 9431 0872 8242 
9903 8431 0741 7913 3134 9906 4241 

1758 7591 1134 9514 1705 1849 8571 10-1 
5147 7133 2870 3261 8251 0473 5338 * 

73 



TABLE 3. (Continued) 

I 
Y 54 = 0.1354 5726 
Y60 - - 0.3677 2464 
761  = 0 
y62 = 0 
y63 = 0. 8213 2294 
y64 = 0.3008 7165 
y65 = 0. 5180 3353 
y70 = 0.4123 3049 
Y7i = 0 
y72 = 0 
Y73 = 0.1133 5100 
y74 = 0.5672 2148 
y75 = 0.5745 6202 
Y76 = 0.1248 7597 
y80 = 0.4214 6301 
Y81 = 0 
7 8 2  = 0 

YB = 0 
Y84 = -0.7808 8073 
y85 = 0.1410 4682 
Y86 = 0,7460 3813 
7 8 7  = -0.2150 5737 
ygo = 0.5524 3877 
791  = 0 
y92 = 0 
Y93 = 0 
Y94 = 0 
y95 = 0.4591 3375 
y96 = 0.1200 9956 
Y97 = - 0.2436 1818 
Y98 = - 0.1187 7000 

yloo = 0.1239 6099 
YlOl = 0 
Yl02 = 0 
?I03 - 0  - 
Y104 - 0  - 
7105 = 
yio6 = -0.2314 8568 
~ 1 0 7  = 0.4405 7716 
y108 = 0.2416 4236 

6312 7775 5415 7283 6001 4730 
6953 1772 1429 7415 7246 2201 lo- '  

7785 2178 5827 7217 4140 7693 lo-'  
4090 9896 3036 8709 1811 9641 lo- '  
9359 9379 0519 8241 0553 1789 lo- '  
0882 7287 3123 2210 0402 1091 lo-'  

2930 6181 9105 3287 9807 8376 
5922 3766 8841 3016 7743 6715 10-1 
0649 5452 5469 3769 2473 6474 lo-'  
3239 1674 1512 8124 1302 1961 lo-' 
2695 3125 0000 0000 0000 0000 lo-' 

7304 6875 0000 0000 0000 0000 lo-'  
1029 2877 2004 3970 8553 6135 
7363 3727 9956 0291 4463 8648 lo- '  
3046 8750 0000 0000 0000 0000 lo-'  
1719 2501 1431 1842 7069 0444 lo-' 

8935 0515 8838 0181 1180 7029 lo- '  
9922 6813 9808 9279 5562 3138 lo-'  
4156 3786 0082 3045 2674 8971 lo-'  
4572 4737 0827 6177 4119 7988 * lo- '  
0923 0042 8073 8555 8121 1091 10-I 

8348 8114 9606 8286 3748 4335 lo- '  
3385 9229 4670 5995 3820 0368 lo- '  
8703 9608 6181 8918 2892 7171 lo-'  
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TABLE 3. (Concluded) 

4961 2383 
8292 3371 

8786 8094 
9844 4095 

4932 1354 
7690 1776 
5727 1178 
1925 5036 
5846 7641 

3209 6413 
0028 7290 

3416 7269 
0329 3795 
4171 2796 
0242 6078 
3473 5858 
3987 5863 

8784 3542 
6724 9055 
3179 4727 
1715 6130 
5629 2579 
8936 9976 

2540 
7236 

6904 
9035 

4261 
5400 
0734 
5255 
0233 

6430 
4367 

56 82 
0334 
691 8 
6703 
3 826 
0671 

5830 
8144 
6675 
41  50 
4244 
6658 

5884 0212 7352 
6838 6923 7170 

7245 6588 6876 
4601 1435 8063 

8048 6243 2844 
9760 1245 5930 
2381 8671 5463 
2568 0405 9902 
2689 6037 0954 

5307 6482 3207 
7987 3893 2431 

8108 5679 5437 
2611 6141 5109 
2157 8547 6416 
1086 6711 9989 
6589 8937 8096 
3954 7258 1903 

8506 8828 9280 
8754 2910 0714 
2427 0314 9422 
9463 9110 6721 
0722 3753 9295 
0243 7127 3010 

6037 lo- '  
66 54 

3595 lo+'  
0038 10-1 

1900 lo-'  
3975 
0279 10" 
2802 
7782 

0852 l O + l  
0306 

6506 
1571 lo+ '  

5920 lo+*  

7907 10-1 

2220 lo+'  

2028 lo-' 

0822 10-1 
8603 lo-'  
6269 
5393 
0401 lo-'  
1115 
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TABLE 4. PATTERN FOR RKN-G-6( 7) -10 

Local truncation error in x: T E  = ~ 1 0 9  ( f9 - flo) h2 
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TABLE 5. COEFFICIENTS FOR RKN-G-6( 7) -10 

~~ 

pi = 0.1018 5185 1851 8518 5185 1851 8518 5185 
Q ' ~  = 0.1527 7777 7777 7777 7777 7777 7777 1778 
o3 = 0.2291 6666 6666 6666 6666 6666 6666 6667 
0 4  = 0.625 
0'5 = 0.375 
0 ' 6  = 0.6666 6666 6666 6666 6666 6666 6666 6667 
0 ' 7  = 0.1666 6666 6666 6666 6666 6666 6666 6667 
0 ' 8  = 0.9703 7314 8321 7701 1063 1914 4946 5592 
P g  = 1 

010 = 1 

51 85 
4444 
8333 
1666 

75 
9 834 

9132 
214 8 
9090 

6985 
0 526 
7111 

4673 
3014 
526 7 
0041 

4938 
9659 
1904 
6873 

1851 
4444 
3333 
6666 

7107 

2314 
7603 
90 90 

64 59 
31 57 
8593 

04 62 
944 7 
4 897 
1522 

271 6 
0241 
7619 
1305 

851 8 
4444 
3333 
6666 

4380 

0495 
3057 
9090 

3301 
894 7 
3408 

5199 
6933 
1193 
6337 

04 93 
034 6 
0476 
8845 

51 85 
4444 
3333 
6666 

1652 

8677 
8512 
9090 

4354 
3684 
1556 

3620 
0 734 
41 56 
44 85 

8271 
8547 
1904 
5 834 

1851 8518 5185 

3333 3333 3333 
6666 6666 6667 * lo-'  

4444 4444 4444 lo-'  

8925 6198 3471 

6859 5041 3223 10" 
3966 9421 4876 * 10" 
9090 9090 9091 10-1 

0669 8564 5933 
2105 2631 5789 * 

3037 7852 6001 lo- '  

4146 7304 6252 
2430 1494 4769 
3786 0082 3045 
5967 0781 8930 

6049 3827 1605 
9129 9235 7437 
7619 0476 1905 
9712 6386 9845 10" 



TABLE 5. (Continued) 

61 93 
4880 
82 82 
54 60 
56 59 
3198 

8792 
4 863 
8562 
3819 
1980 
3713 
0681 

6847 
7435 
0729 
2907 
8987 

26 82 
7631 
1050 
0653 
2893 
5621 

7828 
801 9 
86 85 
3468 
7723 
6980 
6961 

1682 
3923 
0 897 
521 8 
341 7 

9395 
6058 
081.3 
6995 
1791 
8999 

8467 
86 94 
7847 
9437 
6203 
1967 
8894 

4671 
4998 
0719 
4935 
721 5 

~~~ 

6927 2722 4851 2526 10" 
6316 9737 2744 6928 10" 
0450 1130 2169 1446 10" 
8589 4405 8687 3101 10" 
6591 1425 3844 6550 10" 
1428 6348 1503 3844 10" 

3788 8236 8550 9672 
0109 1083 4461 7441 l o f 2  
2962 3361 5811 0987 lo+' 
2049 1200 7960 7603 10" 
6997 8978 8502 5319 l o f 2  
4173 4388 5784 4779 lo-'  
2565 7541 5995 7059 lo-'  

9445 4911 4739 2647 
3829 7121 6887 6606 
7573 5894 5444 6475 
6793 3659 9050 3756 
1898 7341 7721 5190 

0.5186 
0.5835 
0.5835 
0.1312 
0 
0.1312 
0.1775 
0 
0 
0.1775 
0.1925 
0 
0.4028 
0.1034 
0.4201 
0.5015 

8998 
2623 
2623 
9340 

934 0 
5681 

5681 
74 89 

526 8 
9608 
3351 
0891 

6282 5788 
4567 9012 
4567 9012 
2777 7777 

2777 7777 
8181 8181 

8181 8181 
6694 2148 

2912 0077 
5254 4584 
3931 8885 
6323 7311 

7517 
3456 
34 56 
7777 

7777 
81 81 

81 81 
7603 

7 831 
6020 
44 89 
3854 

1467 7640 6036 lo- '  
7901 2345 6790 
7901 2345 6790 
7777 7777 7778 lo-'  

7777 7777 7778 10-1 
8181 8181 8182 10-I 

8181 8181 8182 
3057 8512 3967 io-1 

7938 7457 4623 lo- '  
0086 9943 4537 10-1 
1640 8668 7307 ' 
5953 3607 6818 10-1 

78 



TABLE 5. (Concluded) 

7 6 1  - 0  - 

y62 = 0 
- 0.1283 y63 - 

y64 = 0.1427 
y65 = 0.2947 
y70 = 0.1008 

y72 = 0 
Y73 = 0 

y75 = 0.8955 

Y71 = 

Y74 = - 0.2032 

y76 = 0.1517 
y80 = 0.5878 
781 = 0 
"82 = -0.6816 
Y83 = 
Ye4 = 0 
y85 = 0.3904 

Y87 = 0.9226 
786 = 0.1320 

7 9 0  = 0.8435 
Y91 = 0 

Y93 = 0 
Yg4 = 0 
Y95 = 0 

Y92 = - 0.1399 

y96 = 0.1518 
y97 = 0.1661 
y98 = 0.2535 

y100 = 0.5359 
YlOl = 0 
Yl02 = 0 
Y103 = 0 
Y104 = 0 
~ 1 0 5  = 0.1339 
~ 1 0 s  = 0.1144 
~ 1 0 7  = 0.1891 
7108 = 0.7915 
ylog = 0.9041 

20 80 
7669 
2859 
4019 

921 8 
51 63 
8571 
8608 

741 8 

90 81 
2858 
1993 
6399 

9437 

221 7 
2294 
7326 
5659 

31 81 
9729 
5603 
0409 
5913 

2005 0125 
4823 4784 
1024 8873 
2043 8957 

1069 9588 
6292 3770 
4285 7142 
9282 4074 

1961 6552 

2480 6691 
1017 7748 
4259 5248 
1262 8663 

4195 1129 

0689 4949 
3949 3108 
4223 9613 
8420 3665 

3529 5796 
3051 8163 
3529 7940 
1476 6066 
2007 2332 

3132 
4920 
2118 
4759 

4773 
3311 
8571 
8733 

8792 

0635 
3299 
22 80 
2857 

4662 

2865 
2916 
0665 
3630 

4677 
2233 
7729 
6995 
7305 

8320 8020 
9443 3614 
3617 4799 
9451 3031 

6625 5144 

4285 7142 
2252 3459 

8230 9588 

7773 858i 

4602 0166 
4568 2086 
2944 4534 
5687 5609 

3845 3271 

2410 0270 
6194 1317 
3317 0496 
8565 2940 

4132 9304 
0537 4835 
1841 4167 
7558 1949 
6057 8661 

0 501 
9015 lo- '  
1378 lo-'  
5501 lo-'  

0329 lo-' 
1460 
8571 lo-* 
2929 lo-'  

5550 

2578 10-1 
5647 
3764 
5560 lo-' 

0268 10" 

4702 

8283 
7254 lo- '  

3874 10+1 

7098 
6721 
3934 
0274 
8445 1 0 - ~  

79 



TABLE 6. PATTERN FOR RKN-G-5(6)-8 

Local truncation e r r o r  in x: TE = y 8 7  ( f7 - f 8 )  h 2  
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TABLE 7. COEFFICIENTS FOR RKN-G-5( 6)-8 
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